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G A S  F L O W S  W I T H  H E L I C A L  S U R F A C E S  OF T H E  L E V E L  

S. V. Khabi rov  UDC 517.944 + 533 

Some properties of the invariant gas-dynamic submodel of rank 2 with spiral surfaces of the 
level are reported. Invariant and isobaric solutions of the submodel are considered. 

1. E q u a t i o n s  of t h e  S u b m o d e l .  The  equations of gas dynamics assume a two-dimensional subalgebra 
which is given by the operator basis {atOx + Oo + aOu, tot + (fit + x ) •  + rOT + fl0u}, where a and fl are 
the parameters, in a cylindrical coordinate system (t, x, r, and 0 are the independent variables and U, V, 
and W are the velocity coordinate). This  subalgebra is taken from the optimal system of subalgebras for the 
equations of gas dynamics with an arbitrary equation of state [1, Table 6]. 

The following representation of an invariant solution is chosen: 

v = -x  + q(q2 +  2)-l[q(u + fl) + v = v + q, w = q(q2 +  2)-l[qw _ + fl)]; (1.1) 

q = rt -1, s = xt -1 -- sO-- f l int ,  (1.2) 

where u, v, and w are the invariant velocities which are functions of the invariants q, and s, i.e., the new 
independent variables. 

The substitution of the representation (1.1), (1.2) into the equations of gas dynamics leads to the 
equations of the invariant submodel 

p a2Du + ps = qp(q2 + a2)-212~qw _ (q(q2 + a2) + 2a2)(u +/3)], 

pDv + pq = - v p  + qp(q2 + a2)-2(qw _ au - a~)  2, (1.3) 

Dw = - w ( 1  + q- iv ) ,  A-1Dp + Us "k Vq = - q - i v  - 3, DS  = O, 

where p and p are the invariant pressure and density which are functions of the invariants q and s, a 2 = 
q2(q2 -4- a2) -1, A = pc 2 = pfp, p = f (p ,  S) is the equation of state, S is the entropy, and D = uc3s + vOq. 
Instead of the last equation, one can use the density equation 

Dp + p(us + vq + q - i v  + 3) = O. (1.4) 

System (1.3) is of symmetr ic  form, because the matrices are symmetric for the derivatives of the vector 
of unknown u, v, w, p, and S. If one of the matrices is positive definite, system (1.3) is symmetric and 
hyperbolic [2, p. 51]. 

Let h(s, q) = 0 be the equation of/-characteristics. There is a three-multiple contact/-characteristic Co: 
uhs + vhq = 0. The other two possible real/-characteristics satisfy the equation 

C+: (a2u 2 -- c2)h2s + 2a2uvhshq + a2(v 2 -- c2)h 2 -- 0. (1.5) 

The hyperbolicity condition of system (1.3) is the nonnegativity condition for the discriminant of the 
square equation (1.5) relative to hsh~ 1, and sets the / -domain  of hyperbolicity on this/-solution: 

a2u 2 + v 2 >/c 2. (1.6) 
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TABLE 1 
A a, 3 Operators 

g(p) x~ 
p XI, Xv 
o Xx(v) 

a = 3 = O  w(vp-'), ~ # 1 
vg(p) 

~p 
9(pr ~) 

p~,'r # 1 
0 

Y, 
Y0 + 2xp 

Y0 + 2X1 
Y,, X1 

Yo, Xx(p) 

In physical variables, condition (1.6) takes the form 

( v  - r t - 1 )  2 + r2(r2 + ~ t 2 ) - l ( V  - ~ t ~ - ~ W  - z t  -1  - 3 )  2 />  c 2. 

As r ~ 0, this condition becomes the supersonic-flow condition for a projection onto the plane perpendicular 
to the x axis. 

For the invariant submodel (1.3), (1.4), one can introduce quantities and definitions similar to those 
of two-dimensional steady-state flows: the i-streamline u - l d s  = v - ldq ,  which is the bicharacteristic of the 
/-characteristic Co, the s t ream/-funct ion r q) for which u = -(3/2)qpCq,  v = (3~2)aPes, p = ~r162 1, and 

2/s I q = ~as(S, r the/- integral  of entropy S = S(r  and the i-integral of twisting w = D( r162  ~a s . 
2. G r o u p  P r o p e r t y .  System (1.3), where (1.4) is used instead of the last equation, admits the following 

equivalence transformations: p' = alp, p' = alp + a2, and A' = a l A  for a # 0, and ( s ' , q ' , u ' , v ' ,w ' , 3 ' )  = 
a3(s, q, u, v, w,/3) and p' = a2p for a = 0; the transformation of the invariant variables is omitted. The group 
classification of the submodel equations with respect to arbitrary elements A, or, and 3 is performed within 
the equivalence transformations. The result is given in Table 1, where the following notation is introduced: 
Y,[ = SOs + qOq + uoqu + roy + WOw - 2pOp + 27(7 - 1)-lp0p and Xx(p)  = Xt pOp + XOp (X and g are arbitrary 
functions). The kernel of the admitted algebras is one-dimensional {Os}. 

3. Level  Sur faces  o f  t h e  Inva r i an t  F u n c t i o n s  and  t h e  U n i v a l e n c e  D o m a i n .  The two- 
dimensional surface in the physical space R4(x, r, O, t) corresponds to the point (s, q) of the invariant submodel 
(1.3). A section by the hyperplane t = coast gives a curve in R3(x, r, O). For various values of t, the projections 
of the  curves onto the space R3(x ,  r, O) form a surface which is a helical surface of the level of invariant functions 
the values of which are calculated at one point. The equation of the level surface is derived from formulas 
(1.2) after the elimination of t: 

x = rq-l(c~O + s -- 31nq + 31nr).  (3.1) 

A section of the surface (3.1) by the half-plane 0 = c o n s t  is the curve having two zeros of the function z(r) 
at the points r0 = 0 and rl  = qexp ( - 3 - 1 ( s  + c~0)) and one minimum erm = r l ,  ezra = - 3 r l .  As the angle O 
increases, the quantities r l  and Izml decrease (see Fig. 1). 

A section of the surface (3.1) by the plane x = x0 is the helix for x0/> 0 or two helices with the common 
point aOo + s = 3( In3  - 1 - In Ix01), 3r0 = - q x o  according to the equation c~0 = xoqr -1 - s + 31nq - 31nr 
for x0 < 0. 

For c~ = 0, the level surfaces are the cylindrical surfaces formed by rotation of the curve (3.1) about 
the  x axis. 

Let w C R2(s, q) be the domain in the half-plane q > 0. For fixed t, the lines in R3(x,  r, 0) which cover 
the domain ~ correspond to the points of the domain w. Let ~60 be the cut of the domain by the half-plane 
8 = 80. There is a one-to-one correspondence between w and ~00 according to formulas (1.2). With variation 
in 80 on 21rk, i.e., for 8 = 80 + 2~rk (k is an integer), the image F~00 is shifted along the x axis by 27rkc~t and 
both images are in the same half-plane. For the images to be univalent, it is necessary and sufficient that  the 
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Xm 0 

Fig. 1 

width of w along s, i.e., the length of the cut of w by the straight line q = q0, be not greater than 27ra. For 
example, one can take w from the half-band {q t> 0, Isl 

If the width of w along s is equal to 2 r a ,  for a certain value of q = q0, the discontinuities of the 
physical quantities U, V W,  p, and p can occur on the helix s = so, q = q0 in the physical space for fixed t. 
For continuity, the periodicity of the invariant functions of s with period 2 r a  is required. 

Thus, a continuous invariant flow in the whole space can occur if there is a periodic solution of submodel 
(1.3) in a domain of width 2rra with respect to s for q >/0. 

If the values of the invariant functions at the points q = q0, sl = so, and s2 = so + 2rra are different, 
what should they be for the helical discontinuity surface to become a contact discontinuity, a shock wave, or 
a wall? 

P r o p o s i t i o n  1. The physical trajectories lie on the surfaces which correspond to the i-streamlines of  
the submodel. 

P r o o f .  The equations for calculation of trajectories by formulas (1.1) have the form 

dx x q2(u + fl) + trqw dr d~ q2w - aq(u + B) 
d--~" = ~- -I " q2  dr. o~2 , d- -~=v+q ,  r - ~ =  q 2 + a  2 (3.2) 

The equalities dq/dt  = v / t  and ds/dt = u / t  follow from (1.2) and (3.2). As a result, the equation for the 
i-streamline u - l d s  = v - l  dq is derived. 

C o n s e q u e n c e .  If the  domain of definition w of the solution of submodel (1.3) is bounded by the i- 
streamlines and its width relative to s does not exceed 2r~,  a moving wall or contact discontinuity corresponds 
to the boundary of w in the physical space. In particular, a flow in which a helical wall of zero thickness moves 
corresponds to a curvilinear semi-band q t> 0 of width 2rra relative to s bounded by the i-streamlines. If the 
pressure is continuous on the surface, a contact discontinuity occurs. 

4. S t r o n g - D i s c o n t i n u i t y  E q u a t i o n s .  The invariant surface is given by the equality 

F ( x ,  r, O, t) = q - h(s) = 0. (4.1) 

The normal in the physical space and the motion velocity of the surface in the direction of the normal are 
calculated by the formulas 

n = [ V F I - 1 V F  = (1 + (1 + a2q-2'h2'-l/2r s) t - h s ,  1, aq - lh s ) ,  

D = - -]VFI-1Ft  = (q - (fl + x t - ' )h~)(1  + (1 + ot2q-2)h2)-l/2, 

where V = (Ox,O,,r-lO0). 
The velocity vector is decomposed into the normal and tangent components, u = (U, V, W)  = unn  + u~ 

a n d  u n  = u �9 1"/,. 

The relative velocity and the conditions on the strong-discontinuity surface [2, p. 39] are written via 
the invariants: 

w = un -- D = (v - uhs)(1 + (1 + a2q-2)h2s)-1/2. (4.2) 
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For contact discontinuity, we have [p] = p2 - pl = 0 and vj - ujhs = 0, where the subscript j = 1 and 
2 determines the value of the parameters on both sides of the discontinuity. 

For the shock wave, 

w 2 = p2pll~][p] -1, w 2 = plP21~][p] -1, (4.3) 

the Hugoniot condition has the form H(p2,p2;pl ,pl)  = ~2 - e l  - (1 /2 ) (p2  -F pl)(p~-I _ p21) = 0, where 
ei = e(Pi,Pi) is the value of the internal energy from the ith side of the shock wave, and [ua] = 0. 

The following alternative follows from the last condition: 
1) the / -d i rec t  shock wave (hs = 0) 

[u] = [w] = 0, [v] = [w]; (4.4) 

2) the/-oblique shock wave (hs ~ 0) 

[u] = -( 2h-2 + 1)hs[vl, = o, = Iv](1 + (1 + (4.5) 

P r o p o s i t i o n  2. The other flow parameters are determined from the impact-transition conditions with 
the use of the specified flow parameters in front of the shock wave under the hyperbolicity condition (1.6) in 
the case of  an i-oblique shock wave and one flow parameter behind the shock-wave front P2, P2, and h(s). 

P r o o f .  Let pl, pl, Ul, vl, and wl be given and, for example, p2 > Pl. Then, p2 is determined from the 
Hugoniot condition. The quantities wl and w2 are calculated from (4.3). In the case of an/-direct  shock wave, 
the quantities u2, w2, and v2 are found from (4.4). 

For a/-oblique shock wave, the equation of its surface (4.1) is determined from (4.2) from the side of 
the specified parameters: (u 2 -w2(1  + c~2h-2))hs 2 - 2vlulhs + v~ - w ~  = O. 

Real solutions axe possible under the condition that  the discriminant of this square equation is 
nonnegative relative to hs: 

Vl 2 -4- h2(h 2 -4- ot2)-lu12 >/Wl 2 = p2pl~][p] -1 ~ c21 . 

This inequality coincides with (1.6) from the side of the specified parameters. After h(s) has been determined, 
the quantities w2, v2, and u2 are determined from (4.5). 

If P2 is given instead of P2, then P2 is determined from the Hugoniot condition. 
After h(s) is given, wl is calculated from (4.3), and the Hugoniot condition and the first equality in 

(4.5) set P2 and p2 in the case of a normal gas [2, pp. 23 and 50]. 
If v2 is given, i.e., [v], for an /-oblique shock wave, from (4.2), (4.3), and (4.5) we determine p2 = 

Pl -- pl[V](Vl -- Ulhs) and p21 = pl l (1  -a t- [v](v 1 - Ulhs)-l(1 q- (1 "4- a2h-2)h2s)). The substitution of these 
expressions into the Hugoniot condition gives a differential equation for the determination of h(s). If u2 is 
specified, the/-oblique shock wave is resolved similarly. 

5. I n v a r i a n t  Solu t ion .  The invariant 0s-solution is constructed on the kernel of algebras admitted by 
the submodel. This is the s-independent solution of system (1.3). Since v # 0, the flow is isentropic: S = So. 
The integral 

D3 pv = q2w3 (5.1) 

holds. After the replacement A = qw - t~(u + fl) and the substitution of the integrals we obtain the following 
system of ordinary differential equations: 

Aq 1/' 2a 2 .~ 
5-+- =0, v q(q2 + a 2 ) ]  (5.2) 

vvq + v + p-lc2(p)pq = q(q2 + ct2)-2A2 ' pq + v__q + _1 + _3 = 0. 
p v q v 

vvq + v + p-lc2(p)pq = q(q2 + o~2)-2A2 ' P-~q -4- v_~ q- 1_ a t- 3 ~_ 0. 
p v q v 
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For a = 0, there is one more integral  u +/~ = Cqw. There  is no Bernoul l i - type  integral in the submodel  

considered.  
T h e  equation of s ta te  of the gas can be chosen in such a way tha t  the specified velocity v is obtained.  

--lr', 1/3 For example ,  for v = - q ,  f rom (5.1) and (5.2), it  follows that  p = poq, w = -Dp~/3 ,  u = - B  - a Vpo + 
( a - l q  + aq-1)c(poq), and c(p) = cop2(p 2 + a2p2) -1 exp [ -2p0p -1 - 2a- larc tan(pa- lp~l)] .  This solution is 

de te rmined  for q > 0 and describes the  flow along the  x axis with spreading-free twisting. For q = 0, vacuum 

occurs. 
6. I s o b a r i c  F l o w s .  A general solution of the  equations of gas dynamics  at constant pressure p = p0 

was found  by Ovsyannikov [3]. For invariant  submodels ,  the compatibi l i ty  should be studied. The  general 
solut ion is writ ten in the  following Lagrangian variables: r = R, 8 = 0, and x = ~ for t = 1. 

I t  is convenient to use the polar  coordinates  related to the  cylindrical formulas: V = Q cos ~, W = 
Q sin ~2, and ~ = r - 0. T h e  equat ions of isobaric flows take the form 

U~ + (QR - R-1Qr  ~ + (R-1Qo - QeR)s in  ~ = 0, 

V~ 2 - R-1V(Qlzr  - eRQ~) = (QURr - R-1U~Q~) s i n ~  - (URQ~ - R-1QU~r cos ~, 

IM I = O(U, Q, ~b) = O. 

Isobaric solutions are classified with respect  to  the rank of the  matr ix  M [3]. The  constant solution 

U = uo, V = vocosO + wsinO W = -vos inO + wocos~ 

corresponds to the  zero rank. 

T h e  representat ion of the solutions in the  fo rm 

F(p, R c o s ( #  - r + 0), ~(Q,2 + Q2r _ RU' sin(# - r + O)) = 0, 

where tan  # = Q , ( Q r  and r  Q, and V are arbitrary" functions of the pa rame te r  p(~, R, 0), and F is an 
a rb i t r a ry  function, corresponds to rank 1. 

T h e  representat ion 

f(U, Q, r  = 0, ~ fu  + R cos(~b - O)FQ - RQ -1 sin(r  - O)Fr = g(U, Q, ~b), 

~2ff/U + R 2 c o s 2 ( ~ ,  - z~)FQQ + R2Q -2 sin2(r - O)fr + 2~R cos( r  - O)fvQ 

-2~RQ -1 s in(r  - ~))fur - R 2 Q - l s i n 2 ( r  - O)fQr + R2Q-lsin2(~b - O)fQ 

+R2Q-2sin2(~b - ~))fr - 2~gu - 2R c o s ( ~  - O)gQ + 2 R Q - l s i n ( r  - O)gr = h(U, Q, 0), 

where f ,  g, and h are a rb i t r a ry  functions,  corresponds  to rank 2 of the mat r ix  M.  
For the invariant solution (1.1), the formulas  

Q2 = (v + R) 2 + R2(R 2 + o~2)-2(Rw - ~(z~ + ~))2, 

~ b = ~ + ~ p ,  t a n ~ =  R ( R w - ~ ( u +  ~))(R2 + ~ 2 ) - l ( v +  R) -1, ~ = s + ~ O  

hold. 
T h e  invariant solutions with rank 2 of the  ma t r ix  M have the form 

V = a~b + f (Q) ,  s - a~2 + aRQ -1 sin r - R f '  cos ~ = g(Q), 

- f " n  z cos 2 ~ + 2aRQ -1(1 - R cos qa) sin ~ - R 2 Q - 1 f  ' sin 2 ~ - 2Rg ~ cos ~ = h(Q) 

with th ree  arbitrary funct ions f ,  g, and h. 
T h e r e  are no constant  invariant solutions. 

The re  are two invariant  solutions with rank  1 of the mat r ix  M only for f~ = 0: 

a ~ 0, u = --s ,  v = - q ,  w = --aq-ls;  
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oL=O, u------s, v - - - q + B q - l ( B + C s ) ,  w = B q - l ( q  2 - ( B + C s ) 2 )  1/2, 

where B and C are the constants. 
The  centered wave U = xt -1, V = W = 0 corresponds to the first solution in physical variables. In the 

second case, in physical variables the solution U = O, V 2 + W 2 = B 2, V = B r - l ( B t  + Cx)  is obtained. 
The  part icle  trajectories of the particles have the following form: 

x = ~ ,  r 2 -- R 2 + B ( t - 1 ) ( B ( t  + l ) +  2C~), 

tan(0 - ~) -- B( t  - 1)(R 2 - (C~ + B)2)1/2(R ~ + B( t  - 1)(C~ + B)) -1. 

The particle trajectories z = ~, r cos(0 - 0 - arctan(b 2 - 1) -1/2) = (C~ + B)(b 2 - 1) 1/2, and b = R(C~ + B)  -1 
are the half lines tangent to the  circle r = (C~ + B)(b 2 - 1) a/2 and represent the gas outflow from a volumetric 
source with constant  velocity modulus and twisting. 

This work was supported by the Russian Foundation for Fundamental  Research (Grant No. 96-01- 
01780). 
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